The non-equilibrium steady state of sparse systems with non-trivial topology
نویسندگان
چکیده
منابع مشابه
Non-Equilibrium Steady States
The mathematical physics of mechanical systems in thermal equilibrium is a well studied, and relatively easy, subject, because the Gibbs distribution is in general an adequate guess for the equilibrium state. On the other hand, the mathematical physics of non-equilibrium systems, such as that of a chain of masses connected with springs to two (infinite) heat reservoirs is more difficult, precis...
متن کاملExistence of non-trivial solutions for fractional Schrödinger-Poisson systems with subcritical growth
In this paper, we are concerned with the following fractional Schrödinger-Poisson system: (−∆s)u + u + λφu = µf(u) +|u|p−2|u|, x ∈R3 (−∆t)φ = u2, x ∈R3 where λ,µ are two parameters, s,t ∈ (0,1] ,2t + 4s > 3 ,1 < p ≤ 2∗ s and f : R → R is continuous function. Using some critical point theorems and truncation technique, we obtain the existence and multiplicity of non-trivial solutions with ...
متن کاملQuantum Stability of (2+1)-Spacetimes with Non-Trivial Topology
Quantum fields are investigated in the (2+1)-open-universes with non-trivial topologies by the method of images. The universes are locally de Sitter spacetime and anti-de Sitter spacetime. In the present article we study spacetimes whose spatial topologies are a torus with a cusp and a sphere with three cusps as a step toward the more general case. A quantum energy momentum tensor is obtained b...
متن کاملClassical orbital paramagnetism in non-equilibrium steady state
We report the results of our numerical simulation of classical-dissipative dynamics of a charged particle subjected to a non-markovian stochastic forcing. We find that the system develops a steady-state orbital magnetic moment in the presence of a static magnetic field. Very significantly, the sign of the orbital magnetic moment turns out to be paramagnetic for our choice of parameters, varied ...
متن کاملPercolation-like phase transition in a non-equilibrium steady state
We study the Gierer-Meinhardt model of reaction-diffusion on a site-disordered square lattice. Let p be the site occupation probability of the square lattice. For p greater than a critical value pc, the steady state consists of stripe-like patterns with long-range connectivity. For p < pc, the connectivity is lost. The value of pc is found to be much greater than that of the site percolation th...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
ژورنال
عنوان ژورنال: EPL (Europhysics Letters)
سال: 2012
ISSN: 0295-5075,1286-4854
DOI: 10.1209/0295-5075/98/20002